The MOVING MAGNET is 12 x 3 cms. The picture shows us the scheme of forces the MOVING MAGNET will suffer:

1 - As the MOVING MAGNET approaches, it feels a greater opposition force.
2 - Once the MOVING MAGNET is near the STATOR MAGNET, this opposition force decreases.
3 - While the MOVING MAGNET moves between the STATOR MAGNET, the force changes and impulses the MOVING MAGNET to the middle part of the STATOR MAGNET.
4 - Then, the impulse force goes decreasing, and near the end of STATOR MAGNET, it turns to opposite force again.
5 - This force goes decreasing too as the MOVING MAGNET goes far away from the STATOR MAGNET.

We've got three regions of forces, and two interesting points:

1 - Low repulsion force as the MOVING MAGNET approaches, on a large region before the STATOR MAGNET.
2 - An equilibrium point, where the MOVING MAGNET can approach or move away from the STATOR MAGNET.
3 - An IMPULSE REGION, similar to the length of the STATOR MAGNET (THIS REGION WILL BECOME VERY IMPORTANT).
4 - A lock point, where the forces of impulse and repulsion are equal (that's what I call a 'hole').
5 - A long opposition region as the MOVING MAGNET moves away from the STATOR MAGNET.

Now, I compare these forces with the forces obtained with the Stewart Harris TOMI TRACK:

Then, looking at the results, the only effect I see when I simulate the TOMI TRACK system is a 'relaxation' of the forces along the X axis. It doesn't matter how long the cut magnet is, the effect is always the same. The IMPULSE REGION increases and the force amplitude decreases, but the graphical output is similar. You can see it here:


Read More - Back to Home

free hit counter





All contents of this website © 2005 magneticperpetualmotionmachine.com