The force's magnitude decreases, and the spatial positions of equilibrium and lock points move away from the STATOR MAGNET, so the impulse force region becomes longer. The TOMI configuration gave me the idea of making the STATOR MAGNET smaller to get a maximum 'relaxation' effect.

I don't know if there is another 'real' effect I can't see.

But there is no strange theory from here to the end,
all the following data are based on classical magnetism!:

I probed with 6x1 cm STATOR MAGNET:

Now, we've got a good STATOR MAGNET, that impulses the MOVING MAGNET 5 cm before, and 4 cm after the poles. You can see the comparison between different STATOR MAGNETS dimensions and forms:


We present a system to get an unidirectional magnetic force on a MOVING MAGNET with no back opposition at any moment from a combination of STATOR MAGNETS on a TRACK... and this TRACK can be a closed loop too!

The system is presented on the next diagram:

The materials and physical dimensions used to do the simulation are presented below:

This doesn't mean that another configuration doesn't work better, but THIS ONE DOES!

Usually, the MOVING MAGNET goes only to the lock point of the orthogonal STATOR MAGNET, where the forces of one side and the other one are equal and opposite. The MOVING MAGNET finds a 'hole' and we can't move it without applying external energy. Also, remember the opposition when the MOVING MAGNET approaches.

As we saw before, each STATOR MAGNET has an IMPULSE REGION that is bigger than the STATOR MAGNET itself. Now, making a TRACK of such STATOR MAGNETS, the MOVING MAGNET can pass from one STATOR to another.


The flux lines on STATOR MAGNETS on a TRACK make a closed loop. They pass from one STATOR to the next one through the iron. When the MOVING MAGNET pass near a STATOR, it 'gets' some flux lines, and this allows the force to be as we explained before.

As the MOVING MAGNET goes along the TRACK, it passes from the influence of one STATOR to another. The trick happens when this INFLUENCE REGION is smaller than the IMPULSE REGION of STATOR MAGNETS, then the MOVING MAGNET will move with no opposition, because there are no lock points, only successive IMPULSE REGIONS!


The flux lines on the MOVING MAGNET when it moves along the TRACK are like these ones:

Read More - Back to Home

free hit counter

All contents of this website © 2005